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Consider two finite or infinite populations, each member of which carries a pos-
itive integer valued label. Samples are drawn without replacement. A match is
said to occur between two sampled members if they are from different popu-
lations and carry the same label. The object is to sample from the two sources
in an order that maximizes the number of matches, uniformly across all steps.
An optimal strategy is identified in the infinite case. In the finite case, while an
optimal policy is shown to not always exist, we identify a policy which beats
one that is commonly used. The work is motivated by a database problem in
computer science. Many of the results are established through the probabilistic
technique of coupling,.
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1. INTRODUCTION

Consider identical decks R and S of n cards each, numbered 1 through #n. Two cards are
said to match if they have the same denomination. Suppose that we sample all 21 cards,
one at a time, from the two decks. On each selection we are allowed to determine which
of the decks to sample from, but sampling from the individual decks is random and with-
out replacement. The goal is to generate matches as quickly as possible. More precisely,
we wish to find a reading policy (an algorithm for sequentially choosing which of R or §
to sample from) that maximizes the expected number of matches after k steps, uniformly
in k. In this rather simple setting it turns out that the alfernating policy, which alternately
samples from the two decks, is optimal, and that the myopic or greedy policy, which al-
ways chooses the deck providing the larger expected gain in matches, is equivalent to the
alternating and hence is optimal as well.

The above is a simple case of a more general problem. Let R and S denote two populations
with possibly infinite cardinalities such that each member of these populations carries
a positive integer valued label. Samples are drawn without replacement, which in the
case of infinite cardinality reduces to i.i.d. sampling from two distributions. A match
occurs between two members if they are from different populations and carry the same
label. Again, the object is to sample from the two sources R and S so as to maximize the
expected number of matches uniformly across all steps. The optimality of the alternating
strategy in the above example, while hardly surprising, is not especially obvious (see our
argument in Example 3, below). Moreover, we will show that the conclusion reached in
the example, that alternating is greedy and all greedy are optimal, is not valid in general.

The motivation for the work done here is a specific database problem in computer sci-
ence. When a user queries a database, it is desirable for the system to generate answers
quickly, so that data can be processed immediately. Minimization of query response time
is also important when the database system is part of a larger information pipeline, where
query results are fed to analysis programs for further processing. Overall pipeline exe-
cution time will be reduced if the application can begin working before the database is
completely read. One of the major factors in query response and overall execution time
is the execution of the join of two relations. The goal is to maximize the expected output
rate among all reading policies. Recently, there has been interest in the study of the effect
of reading policies in the execution of join relations, albeit with different goals. For ex-
ample, Haas and Hellerstein (1999) consider the effect of reading policies in ripple joins
for online aggregation, especially in terms of the length of the confidence interval for the
aggregate quantity of interest. See also Luo et al (2002). For another such type of problem,
see Ilyas et al (2003). Use of the output rate as a measure of performance can be seen in
Viglas and Naughton (2002) and Chandrasekaran and Franklin (2002).

In our abstract problem, a relation is a population and a join is a function that specifies
when two members, one from each population, match. The indicator function which



takes the value one when the two members have identical labels serves as the join in our
case. Hence an output is generated by a match and maximization of the expected output
rate amounts to the maximization of the expected number of matches. Strictly speaking,
all databases are finite. But since sampling a small percentage from a finite population
without replacement is probabilistically very close to sampling with replacement (see
Diaconis and Freedman (1980) for a precise statement), it is of interest to study the infinite
population case.

Our problem, while reminiscent of the two armed bandit problem (see Berry and Frist-
edt (1985)) is in fact very different from it. In the latter, the need to sample from both
populations stems from an ignorance of the population distribution(s), whereas in our
problem the same need stems from the fact that matches occur only between members
of different populations. Second, in the bandit problem, one is maximizing a one dimen-
sional objective function, while in our case we wish to maximize the expected number of
matches at all steps. Hence, while in our case a solution may not always exist, in the case
of the bandit problem, under quite general conditions, a solution always exists. In our
case the reason that maximization of the expected number of matches at a specified step
is not interesting is that the dynamic nature of query processing confers no special status
to any specific step. This is also the reason why the techniques used in the two problems
are very different. In our problem we make no use of dynamic programming techniques,
but rather rely frequently on the probabilistic technique of coupling (see Lindvall (1992)).

It is convenient to classify reading policies as either adaptive or non-adaptive. A non-
adaptive policy ignores the information (the observed labels) that is obtained from the
samples. The non-adaptives include the fixed policies, where the sampling order is con-
stant. For example, a plan with a 2 : 1 policy samples in the order R R,5,RR,S,... The
non-adaptives include also policies where the order is randomly determined in a way
such that the probability of the k-th source being R depends solely on the source se-
quence through the (k — 1)st step. The adaptive policies, when deciding where (R or 5)
to sample on the k-th step, may take into account the data that has been generated (the
observed labels) through the first (k — 1} steps. A natural adaptive policy, is the myopic
or greedy policy described above. In a sense, a greedy policy is a short term strategy that
optimizes the expected one step gain, with no explicit regard to future (two step and be-
yond} gains. Note that there may be more than one greedy policy as the greedy criterion
at some steps, occasionally, may be ambivalent between R and S. In our problem, greedy
policies merit special attention since optimal policies, if existent, must be greedy.

Alternating policies are also of interest for their simplicity, their frequent appearance in
the literature (for this reason) and for their optimality among a restricted class of policies
as shown below. Finally, we note that alternating, unlike greedy, can be adopted even
when the population distributions are unknown.



Let M4(n) denote the number of matches formed through the first n steps under policy
A. We say that policy A beats policy B if

E(Ma(m) = E(Mp(n)), n>1 oy

with strict inequality for at least one value of n. Policy B is regarded as inadmissable in
this case. If (1) holds for all policies B, we say that policy A is optimal. Optimal policies
may not exist in some cases.

In Section 2, we show alternating policies to be optimal among the non-adaptives. In
Section 3 we investigate the class of greedy policies. First, assuming that both populations
are infinite, we show that any greedy policy is optimal. When one or both populations
are finite, we show that in general there may not exist an optimal policy. Nonetheless,
it makes sense to use a greedy policy vis-a-vis any non-adaptive as the former is shown
always to be as good as the latter and in most cases strictly better. We end this section by
defining some additional notation.

Notation:

In the sampling without replacement case the cardinalities of R and $ are denoted by
|R| and [S|, respectively. We assume, without loss of generality, that |R| < [S|. A record
from either source carries one of the possible ! labels 1, ..., The probability that a single
record from the R source (resp., the S source) carries the i-th label, is r; (resp., ;). The
probability vectors (1, ..., #) and (s, ..., s} are denoted by # and , respectively. 1 denotes
a generic vector of ones whose dimension should be clear from context. The inner product
of # with § is denoted by p, i.e. y = -3 We shall always assume p to be positive as
otherwise there will be no common label between the two sources. The labels on the #n-th
records read from the R and S sources are denoted by Lr(n) and Lg(n). The above implies
that {Lr(n)}yz1 and {Lg(n}},=1 are sequences of identically distributed random variables
with

Pr{Ir(l)=i) =7 and PrLg(l)=d=s, i=1,...,1 @)

Associated with the sequences {Lr(n)},>1 and {Lg(1)},»1 are the discrete time vector count-
ing process {Ng(n)}y>1 and {Ng(n)},»1; the first is defined by

H
N(n) = (Nr(1,1),...,Nr(, D), with Ne(,i) =Y Ipgpmyy i=1..,bn=1... (3)
j=1
and the second is defined analogously.

A reading policy is a zero-one valued stochastic process with the convention that the
value 1 denotes a selection from source R and the value 0 a selection from source S.
Hence



1 if the n-th selection is from R;
C(n) = , n=1,2,... (4)
0 if the n-th selection is from S;

Associated with each reading policy are two counting processes [R(1)},»1 and {S(n)}};»1
defined by

R(n) := Z C(j) and S(m):=n-R(m), n=1,2,... (5)
=1

These processes keep track of the number of records read from R and S, respectively,
after a total of n records have been read. Also associated with a reading policy is a non-
decreasing process {M(n)},,»1 which counts the number of join returns, i.e. matches, gen-
erated by the first n records. Hence,

M(n) = Nr(R(D) - Ns(SG1), n=1,2,... 6)

Observe that all of the processes {M(n)}>1, {R(n)}y>1 and {S(n)},;>1 depend on the reading
policy even though the notation does not make it explicit.

The filtration {Fy},>1 is defined by
Far1 = F Vollr(l), ..., Le(R(m)); Ls(D), ..., Ls(S(m})), n=12,... ~ (7)

with 7 being arbitrary. F; for example could contain all the information needed for
randomization. All reading policies will henceforth be assumed to be adapted to the
above filtration - they form the set of all implementable reading policies. Note that the
filtration itself depends on the reading policy.

2. ALTERNATING Poticies

We study the class of non-adaptive reading policies, Cna, that is the class of policies which
do not make use of the information contained in the records that have been read in de-
ciding the source for the next record. Observe that this does not imply that such policies
have deterministic strategies as they could always use some exogenous randomization to
determine the choice at each step. Taking the expected number of matches as our opti-
mality criterion we show (Theorem 1) that each member of a sub-class of such policies,
which satisfy

R@2n) =min(n, R}, n=1,2,... 8)

is optimal. Any reading policy in Ciy4 which satisfies (8) is called an alternating policy. In
words, an alternating policy is one which does not use any information from the records,
and under which at any step the numbers of records read from the two sources are within
one of each other until such time (in the finite population case) that this is not possible.



There exists a large, if not an infinite, number of alternating policies. For our purposes
Ca will denote the canonical alternating policy which strictly alternates between the two
sources with the first pick being from R. Hence,

Ca(n) =min(#,2|R)) mod2, n=1,2,... )

From the point of view of implementation, it may be more efficient to work with the
alternating policy given by

C(”) = I{n mod4<2), N = 1r21 ce (10)

until R is completely read as it, leaving apart the first record, reads two records at a time
from the chosen source. Due to theorem 1 below, the particular choice of alternating
policy is immaterial from the point of view of performance.

Before showing the optimality of alternating policies among the non-adaptives, we state
a lemma that helps compare the performances of policies within Cy4.

Lemma 1 For a reading policy C(:) € Cya, we have
EM(n)) = ERm)Sm)Hu, n=1,2,... (11)

Proof Asamember of Cyy, the process C(-) is independent of {Lg(n)},»1 and {Lg(n)};»1.
The proof now follows by observing that

E(M(n)) = B(Nk(R(n)) - Ns(S(m))) = E(E(Nr(R(n)) - Ns(S()R(m)))
= E(R(n)S(mE(Nr(1) - Ns(1)))

= B(R(m)S(n)) ¥ §
= E(R(m)S(m)u

§

It is instructive to look at the policy whose selections are determined by independent
tosses of a p-coin - heads choose R and tails choose S. Assuming that both [R] and [S| are
greater than n, we have E(M(n)) = n(n — 1} + p = (1 — p)u. This expectation is maximized
for a fair coin, for which E(M(n)) = (1/4)n(n — 1)p. In this case, the shortfall in the
expected number of matches at the n-th step compared to that of the alternating is given
by |n/2]u/2. Note that while the expected number of matches is of order n?, the shortfall
from the optimal level is only of order n.

Theorem 1 Among all reading policies in Cy4, the alternating policies maximize E(M(1))
for all n. Moreover, for these policies

EM(n)) = min([n/2), IR))max ([#n/2],n =R}y, n=12,...,|R|+|S| (12)



Proof The above follows by observing that
E(M(n)} = ERm)S(n))p = E(R(n)[n — Ry, n=12,... (13)

and the fact that the function y,(m) = m * (n — m), for n a positive integer, defined on the
set of integers attains its maximum on {|n/2], [n/2]}. §

3. Greepy PoLIcIEs

In this section, we examine policies that utilize knowledge of 7 and §, together with the
information contained in the records that have been read, in order to optimize the choice
for the next step. We shall refer to such policies as greedy policies. Towards a more precise
definition, we observe that

EM(n +1) - M(m)|Fp41) = E(Ns [S(n), L (R(1) + D] Fp)Cln + 1)

14
+ E(Ng [R(n), Ls (S(n) + D[ F41) (1 = C(n + 1)) a9

The above implies that any C(-) maximizing the above conditional expectation should
satisfy

1 if B(Ns [S(r), Lr (R() + DIIFs41) > E(NR [R(n), Ls (S(n) + DN Frs1);
C(n+l) = V=1
0 if E(Ns [S(n), Lg (R(n) + D]IF+1) < E(NR [R(1), Ls (S(1) + 1)]|F41);
(15)
Note that at every step where
E(Ns [$(n), Lr (R(1) + D]|Fus1) = E(N [R(n}, Lg (5(12) + D)1 Fus1), (16)

two greedy policies may differ as the greedy criterion is ambivalent. Such possibilities
make the set of greedy policies large and its study more interesting.

The principal reason that greedy policies are of interest is given by the following theorem.
Theorem 2 Every optimal policy is necessarily greedy.

Proof Let C denote an optimal policy and let the #n-th step be the first step where C
makes a non-greedy choice with positive probability. Now let C¢ denote a greedy policy
which agrees with C on the first # — 1 steps - this is important as the first n — 1 steps might
involve some (apart from the first two) where the greedy criterion is ambivalent. Let M(:)
and Mg (') denote the processes which represent the number of matches under C and Cg,
respectively. Then by construction we have M(n — 1) = Mg(n — 1) and since Cq is greedy
we have,

E(Mg(n) — Mg(n - DIFy) — EM(n) - M(n — 1| F) 2 0. (17)



Now, by the definition of 7 we have strict inequality in (17) with positive probability. Thus
E{(Mg(n)) > E(M(n)); a contradiction to the optimality of C. Hence the proof. §

We study the class of greedy policies in two steps. In the first sub-section, we restrict our-
selves to the case of [R| = co. Under this restriction we show that we have a clean theory
- every greedy policy is optimal. In the second sub-section, we show that removal of the
above restriction drastically changes the theory. By exploiting the fact that when sam-
pling without replacement in small populations (or close to the end in large populations)
the distribution of labels can change drastically from one step to another, we construct
examples to paint a contrasting picture. This happens as the greedy criterion fails to
make use of this knowledge which allows non-greedy policies to possibly beat greedy
policies on specific steps. Nevertheless, we show that every greedy still dominates any
alternating.

3.1Casei: |R| =00

Assuming that [R| = co is equivalent to assuming that {Lr(#)},>1 and {Lg()},>1 are se-
quences of independent and identically distributed random variables. Under this as-
sumption, we have

E(Ns [S(m), Lr (R() + DIIFy21) = Ns (S(n)) - 7 (18)

N
=
Il
~-
N

and
E(NR [R(Tl), LS (S(Tl) + 1)]|fn+1) = IQIR (R(?’I)) : §r "= 1r 21 cen (19)

For further analysis it is important to realize that Ng (S(n)) - # and Ng (R(n)) - § are both
sums of i.i.d. observations. To make this explicit we define

Xr(n)i=sppm and Xg(n}:=rgpy, n=12,... (20)

The two sequences {Xg (1));>1 and {Xg (n)},»1 are sequences of i.i.d. random variables
with common mean y and variances ¢4 and O’%, respectively. We shall denote their partial
sums by I'g [[] and I's [], i.e.

Trln] =) Xr(j) and Tslnl=) Xs(j), n=12 .. (21)
j=1 j=1

Now, we can write
Ng(S(n)) - F=Ts[S(m)] and Nr(R®n)-§=Tr[R(n)], n=12,... (22}

Hence (15) simplifies to



1 ifTg [S(TI)] >I'r [R(n)].r
Cn+1)= m=12,... (23)
0 iflg [S(n)] <TI'r [R(T’I)]I

We observe that the implementation of the greedy algorithm is greatly facilitated by the
representation (23).

It is interesting to note that if the labels are distributed as discrete uniforms in both the
sources then the canonical alternating policy turns out to be a greedy policy. This can be
seen as

=i

F=1/l=§ = Tgnl=nflandTr[n]=n/l, n=1,2,... (24)
Moreover, it can be easily seen that this is the only non-degenerate case when an alternat-
ing policy is also greedy. This case is also characterized by oz + g5 = 0. In the following,
We will assume that og + g5 > 0 unless stated otherwise.

For our purposes Cg will denote the canonical greedy policy which chooses from the
source R whenever there is a tie, i.e. whenever E(Ng[S(n), Lr (R(n) + 1)]|F+1) is equal
to E(NRr [R(n), Ls (S(n) + 1)]|.7+1), and whose first pick is from R. The following theorem
allows us to restrict attention to the canonical greedy policy.

Theorem 3 Under the assumption that {Lr(n)},»1 and {Lg(n)},>; are sequences of inde-
pendent random variables, all greedy policies lead to the same value of expected matches.

Proof Letus define constants

PR = Z ri, and pgi= Zs,- where A := li|r:s; > 0} (25)
ied ieA
respect to § (resp., 7). And hence the statement that both pr and pg are equal to one is the
same as saying that the probability vectors 7 and § are mutually absolutely continuous.

We observe that if #and § are mutually absolutely continuous then the number of matches
under two greedy algorithms cannot differ at two or more consecutive steps. And the
steps at which they may differ have the same expected gain in the number of matches
due to their being greedy. Hence we have the equality of the expected number of matches
under two greedy policies when ¥ and § are mutually absolutely continuous.

Now we consider the case where prpg < 1. We will need the sequence of stopping times
{Ti}iz1 and {T}}i>1 defined by

T1:=0 and Ti:=min{n> T} |lr[Rc ()] =Ts[Scm)]}, i>2 (26)

and



T;:=Ti+min{n > 1|Lg (Rg (T}) + n) € Al+min{n 2 1|Ls (o (TN +my e A}, i22 @7)

where Rg () and Sg () correspond to the canonical greedy policy. Observe that by the
definition of a greedy policy it follows that the number of matches for any two greedy
policies can differ only between T; + 1 and T; — 1. Now it suffices to show that for a non-
canonical greedy policy, say C(-) which agrees with the canonical greedy policy after T3,
the expected number of matches is the same as that for the canonical greedy poelicy.

Let us define a sequence of random variables {Y;},»1 such that

Nr[RG (T2),Ls(Sg (Ta+m)], if T} 2 Tr +nand Cg(T2 +n) =0
Y, = { Ng [Sc (T2),Lr (R (T2 +1))], if TE >To+nand Cg(T2+n) =1 (28)

0, T, <To+n

and a sequence {Z},»1 defined similarly for C(-}. Observe that

0, n<Ty
Mg(n) - M(n) = (29)

YRY-2Z), n>T

To show that M¢(-) and M('} have the same expected values it suffices to show that con-
ditioned on

Gr, ==(Lr (1),..., LR (Rg (T2)); Ls (1),...,Ls (Sg (T2))) (30}

i, Yyand I Z; have the same expectation for all n. But note that under the natural
filtration augmented with Gr,,

#

Z (Yi — iy 2mpen TR [Tz]) (31)
i=1

is a zero martingale implying
E[Z Y,-|gT2] = TR [T2] Pr (T} = T, + n|0r,) (32)
i=1

By a sirnilar argument it can be shown that (32) holds true also for the sequence {Z;},»1.
This completes the proof. §

Now towards showing the optimality of every greedy policy, the next theorem says that
every non-greedy policy C, that takes with positive probability a non-greedy step, is inad-
missible. To construct a policy which dominates C, we need two random times, T, and
T*. The random time T, denotes the last time that the reading policy C(-) takes a greedy

10



step before taking its first non-greedy step. In other words, C(-) takes its first non-greedy
step at T, + 1 C(-) . Hence T, can be defined as

T, = inf{n > 1| 2C(n + 1) — 1) * [Ts [S(1)] = Tr [R(1)]] < 0} . (33)

The random time T", always greater than T., is the first step beyond T. that C(-) chooses
the source other than that which was chosen at T, + 1. Hence T can be defined as,

T =inf{n > T.| C(n) + C(T, + 1) = 1) . (34)

While both T, and T” could assume the value oo, note that T, is finite with positive prob-
ability as C is non-greedy.
Using the above two random times we define the, one more greedy step, policy C° as

C(k), k<T.ork>T,

C'm)={1-C(Tl.), k=T.+1; (35)

C(T,), T.+1<k<TY

C?° can be described as follows: C° coincides with C as long as it takes greedy steps; The
first time that C takes a non-greedy step, C° takes the greedy step and then follows a path
such that it can couple back with C at the earliest opportunity. The time that C and C°
couple back (this time forever) is T* + 1. In Figure 1 this is depicted with the assumption,
for the purpose of illustration, that C(T, + 1) is equal to R.

5 R--R*- R R

c Torl Toct2 1 1
C(T.) T +1) ...

R 3 . . .
3 7. T
O
R R-R: R _§
Te41 To42 T™-1 T
— C()=c*() — —C()=c°() —»
- M()=M°() —] ——— M()=M() ——

Figure 1 One More Greedy Step Policy

In the following R®, 5° and M® will correspond to C° whereas R, 5 and M will correspond
to C. Let us define a filtration {G,},>p such that

Gn=GoVa{Lr(1),...,Lr(R°(n)); Lg (1), ..., Ls (5°(m))), n=1,2,... (36)

with Gy containing all the information needed for randomization not only by C* but also
by C.

11



Lemma 2 The random times T, and T* are both stopping times with respect to the
filtration {G,;};>0-

Proof Since C is a reading policy, C(n + 1) is measurable with respect to F;,11, see (7).
Moreover, by construction, R°(T,) and R*(T*) are equal to R(T.) and R(T"), respectively.
Combining these two statements we have that both {T, = k} and {T” = k} are members of
Gr. Hence T, and T* are G stopping times. §

As a consequence of the above lemma it should be clear that C° is adapted, in other words
C? is an implementable reading policy.

Theorem 4 Under the assumption that {Lr(r)},>1 and {Ls(n)},>1 are sequences of inde-
pendent random variables, any non-greedy policy is inadmissible.

Proof First, observe that by construction of C* we have

EM®(n) - M(migr.) =0 on {(n<T,) (37)
and
E(M?®(n) - M(n}Gr,) = RC(T. + 1) = 1] [Tr [R*(T)] - Ts [S°*(TW]] on {n=T.+1} (38)
We shall now show that

E(M®(n) - M(n)IGr.)

> [2C(T, +1) = 1] [T [R*(T)] = Ts [SUTH] Pr(T* > niGr.) on {n>T.+1} 39)

By symmetry it suffices to show that (39) holds on the subset {n > T, + 1) N{C(T, +1) = 1}.
Toward this end note thaton {# > T, + 1} N {C(T. + 1) = 1} we have,

M?®(n) — M(n) 2 [N [R*(T.), Ls (S°(T« + )] = Ns [S*(T.), Lr (R*(n) + D] iy (40)

Now using the fact thaton {# > T, + 1} N {C(T, + 1) = 1} the event {T* > n} depends neither
on Lg (5°(T, + 1)) nor Lg (R°(r) + 1), we get (39) by taking conditional expectation with
respect to Gr,.

Combining (37), (38) and (39) we have E(M?®(n)) is greater than or equal to E(M(n)). But
note that by definition of T, the right hand side of (38) is strictly positive. Hence for all n
such that Pr (T, + 1 = n) > 0 we have that E(M°(n)) is strictly greater than E(M(n)). But as
T, is finite with positive probability there exist at least one such n. Hence every non-greedy
reading policy is inadmissible. §

Corollary 1 Under the assumption that {Lr(#)}u=1 and {Lg(1)},4>1 are sequences of inde-
pendent random variables, the set of all greedy policies is the set of all optimal policies.

Proof Tollows by combining the above two theorems. §

12



To summarize, any greedy policy is optimal and unless the populations are uniformly
distributed on the same set of labels, every greedy policy will strictly dominate any alter-
nating,.

3.2 Caseii: IR| < o0

Here we show via examples that the case of |R| < o0 is very much in contrast to the above.
We start with an example which shows that there may exist inadmissible greedy policies.
This is unlike the case of [R] = co where all greedy policies were not only admissible
but in fact optimal (Corollary 1). Moreover, it also shows that unlike alternating policies
(see Theorem 1) greedy policies may differ in their expected numbers of matches at some
steps.

Example 1 Let the R source consist of 8 records with four of them carrying label 1 and
the rest label 2. And let the S source consists of 7 records with six of them carrying label
1 and one carrying label 2. In the following we will construct two greedy policies and
show that one of them strictly dominates the other. Hence showing that not only there
may exist inadmissible greedy policies but also demonstrating that greedy policies may
differ in their expected numbers of matches at some steps.

The first of the two greedy policies, denoted by Cg, is one which at any step where the
greedy criterion is ambivalent, i.e. where we have (16), chooses R. To define the second
greedy policy we consider permutations for which the first two records of R consist of one
record of each label and the first two records of S carry label 1. On such permutations all
greedy policies after the fourth step would have read two records each from both sources
and, more importantly, be ambivalent about the choice of source for the next pick. The
second greedy policy, denoted by C°, is one which coincides with Cr on all paths except
the paths described above. The policy C° will choose S on the fifth step unlike Cr and
after this step (on this path) will choose R on any further step where the greedy criterion
is ambivalent.

Now we show that Cg strictly dominates C°. For this purpose it is sufficient to restrict
attention to the permutations described above. The possible paths followed by Cr and
C° on such permutations are shown in Figure 2. The numbers along the edges are the
probabilities and the 2-tuples, for example (51;3) at the fifth step, stands for a 1 label
from § resulting in a total of 3 matches (i.e. a gain of 1 match). It is easily checked that
both Cr and C° couple on the step after Cg picks a 1 label from R. And since the number
of matches will coincide after they couple, the paths in Figure 2 have been truncated
after a 1 label from R is observed under Cgr. Also, for the same reason the two policies
necessarily couple by the ninth step. Hence the expected number of matches coincide
from the ninth step onwards and, by construction, until the fifth step. Ience all that
remains to be shown is that the expected number of matches for Cr dominates that of C°
on the sixth, seventh and eight step.
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Figure 2 Greedy Policies Leading to Different Expected Matches

Now, we explicitly calculate the expected numbers of matches for the two policies at the
seventh step. Let M°(7) and M®(7) denote the number of matches after the seventh step
according to C° and Cg, respectively. From Figure 2 we see that

20 14
R _ - =
]E(M (7)) =19 (05204 (0.75+4 +0.25x2)) = 5 (41)
and
IE(M°(7))—~—20* 08+05+04+3+02205+04+5)= 1:6 (42)

9

We conclude by observing that calculations similar to the above show that ]E(MR(6)) =
E(M°(6)) and E(MR(8)) > E(M°(8)). §

The above example shows that the choice of greedy policy can affect the outcome. There
are two obvious scenarios under which the set of admissible greedy policies has a simple
characterization. When an optimal policy exists, every admissible greedy policy is an
optimal policy. Moreover, when every non-greedy policy is inadmissible, the collection of
admissible greedy policies coincides with that of the admissible policies. In the following
example, neither of the above scenarios occur.

Example 2 The sources here are same as that of Example 1. First, we construct for
every greedy policy a corresponding non-greedy policy such that the latter policy is not
dominated by the former policy. Thus no greedy policy can be optimal which along with
Theorem 2 implies that there is no optimal policy. Second, by working with a particular
admissible greedy policy we show that the above corresponding non-greedy policy is
admissible. Hence demonstrating that admissible policies may be non-greedy.

In our construction the event {R(11) = 6;Ngr [11,1] = 3; Ns [11, 1] = 5}, denoted by A, is
key. We observe that under every greedy policy A has a strictly positive probability. This
is s0 as on permutations with the first six labels from R being (1,2, 1, 2,2, 1) and all of the
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first five from S being 1, all greedy policies will follow the same path from the seventh
pick until the thirteenth. In particular, after the eleventh step {on such permutations) they
will have picked six records from R with three of them being of label 1 and five records
from § with all of them being of label 1. Note that the permutations specified here is a
subset of the permutations of Example 1 and hence the statements made here follow from
the discussion in Example 1.

(52;21) (51;24)
(R1;24) (52;23)
(R2;18) (R2;20)

(51;21) (51;18)
(R1;23)  (S%19)
05, (R2;19) (R1;20)

12 13 13 12

Figure 3 No Greedy is Optimal

The two possible choices at the twelfth step are shown in Figure 3 where the greedy
choices are circled and the non-greedy choices are boxed. Otherwise, the conventions are
the same as those of Figure 2. From Figure 3 it can be seen that the twelfth choice for every
greedy policy is to pick from S followed by any of the two choices for the thirteenth step;
this leads to an expected number of 21 matches after the thirteenth pick. Interestingly,
going non-greedy at the twelfth step, that is picking a record from the R source, improves
the expected number of matches after the thirteenth pick by 0.75 (from 21 to 21.75). This
happens despite the non-greedy step costing on average 0.5 matches on the twelfth pick
(18 v/s 17.5).

To show that no greedy is optimal, let us fix a particular greedy policy, say C. Now define
a policy C* that agrees with C on the complement of A, and on A up to the eleventh step.
At the twelfth step on A, C* makes the non-greedy choice. The difference in the expected
numbers of matches at the thirteenth step under C and C*, by the discussion above, is
negative. Hence C" is not dominated by C which implies that C cannot be optimal. Thus
in this example there is no optimal policy.

Figure 4a plots the difference in the expected number of matches under C and C* for
two particular greedy choices for C - one which always picks from R on steps where the
greedy criterion is ambivalent and the other which picks from S on such steps. Note that
the difference is zero up to the eleventh step, is positive at the twelfth and negative at the
thirteenth.

15
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Figure 4 Greedy may not be optimal but they still beat the Alternating

Now let C be defined as an admissible greedy policy with the least expected number of
matches at the twelfth step among admissible greedy policies. A further requirement on
C is that on A4, at the thirteenth step it picks from R. And let C* be the corresponding non-
greedy step as defined above. It can be easily argued that such defined C* is admissible.
Hence in this example there exists an admissible non-greedy policy. §

The proof of Theorem 2 suggests that one could possibly extend it to show that a greedy
policy can be dominated only by another greedy policy. This, though true in the case of
IR| = oo (see Corollary 1), is not generally true in the case of |[R| < co. In fact, in the example

above it can be shown that any greedy policy which on A, picks § on the thirteenth step
can be strictly dominated by a non-greedy policy.

More interesting, especially from the practical point of view, that in spite of greedy poli-
cies not being optimal in the above example, they still dominate the alternating policies.
This is seen in the plot (Figure 4b) of the difference between the expected number of
matches of the two greedy policies of Example 2 and that of an alternating policy. The

following theorem shows that this is not particular to the example. First, we define some
additional notation that we will need in its proof.

Let P(R) and 7(S) denote the set of all permutations of R and S, respectively. And let
P denote P(R) X P(S). For any L, a random variable on P, we define Lg and Lg as L :=
(ER, is). Moreover, the components of Lr and Lg are given by

J-ER = (LR(]')I e ILR(lRl))

and Lg = (Lg(1), ..., Ls(IS]). (43)
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Define the partial rotation operator ¢;, which acts on n-vectors (n > i) as follows:
(Pi (CL)‘I, ) wn) = (CUl, e, Wi, W Wiy . wn—l) (44)
Theorem 5 Every greedy policy is at least as good as any alternating policy.

Proof It suffices to prove the above for greedy policies which do not use any exogenous
random variables (for randomization). For any such chosen greedy policy Cg(-) we will
show that, for any fixed n > 3

EMg(n)) =2 E(Ma(n)) (45)
where Ca(+) is the canonical alternating policy.

First, we define a reading policy Cu(-) as follows;
Cglk), k<T;

0, T<k<nand Cg(T)=1;
Culh) 1, T<k<nandCg(T)=0;’ (46)
Call), k>mn;
where T is defined as
T:=inf{k: Rg (k) = Ry (n) or Sg (k) = S5 (n)}. (47)

Cu(-) is constructed to agree with the alternating policy at the n-th step while following
the greedy policy to the maximum extent possible until the n-th step.

Second, we define a function © from P to itself as follows:

H H
(n, ) = [[ [T a0 an| T o100

Ce(M)
i=T+1 “ i=T+1

1-Ce(T)
] CDS] ’ (48)

where qb? is taken to be the identity operator. Note that Cg(-) is dependent on (&g, &s) in
(48), even though the notation does not make it explicit. Now, let P be the probability on
P2 concentrated on

{(p,n(p)) : p € P} (49)

such that its first coordinate is uniform on P. It can be shown that 71 is one to one and onto;
this implies that the second coordinate too is uniform on P under P. Let L! and 72 be
the random variables representing the first two coordinates under P. We will observe the
greedy policy under L' and the Cy(*) policy under L2.

By the rdefinition of Cy(-) and the coupling we have,
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Ly (Rg(0) =LA (Ru(k), fork<TorT<k<nandCg(T)=0=1-Cg(k)  (50)
and
Ll (S (k) =L3(Su(k)), fork<TorT<k<nandCg(T)=1=1-Cglk)  (51)
Moreover, with {Gy)»1, a filtration, defined by
Gt =0 (Lg(1),..., Lk Re O} L5(1),..., I (Sc (), k=1land G ={®,Q} (52)
we have conditioned on G, fork > 1,
Ik (Ro () 212 (R (k)), on the set [Ca(T) = 0 = Co®); T <K) (53)
and
Lls (Sg k) = ig (Su(k)), ontheset {Cq(T)=1=Cqk);, T <k}. (54)
If A is the usual difference operator, i.e. AM(k) defined by M(k + 1) — M(k}, we have
E(AMg(k— 1) — AMy(k - D|G) =0, ontheset {T >=k}; k> 2. (55)
The above equality follows using (46}, (50) and (51). Also, we have
E(AMg(k - 1) - AMu(k—1)|Gy) =0, ontheset {T<k}; k=2 (56)

On the subset where Cg(T) + Cg(k) = 1, the above equality follows from (50) and (51)
and the fact that the greedy policy has sampled all of the elements (and possibly some
additional ones) that have been sampled by the alternating to match the incoming k-th
record. On the subset where Cg(T) + Cg(k) # 1, the above equality follows from (53) and
(54) and the greedy criterion. Combining (55) and (56),

n—1
E(Mg(n) — Ma(n)) = E(Mc(n) - Mu(n)) = E| ) [AMg(k—1) - AMu(k—1)1{20  (57)
i=2

Hence the proof. §

Towards specifying a condition under which we have strict inequality in (57), let us say
that the k-th greedy step is uniquely greedy if the greedy criteria uniquely specifies the
choice of the source at this step. Then if, for some k < n, either

Pr(Rg (k) > Ra (1), Cg(k) = 1 and the k-th step is uniquely greedy) > 0 (58)
or

Pr(Sg (k) > Sa {n), Cg(k) = 0 and the k-th step is uniquely greedy) > 0, (59)
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we have strict inequality in (57). The above is a rather mild condition which, for example,
is satisfied by Example 2. And in the particular case of n = 3 it can be easily seen that the
alternating, and for that matter every policy in Cya, is strictly beat by any greedy if the
labels are not uniformly distributed in both the populations.

In the examples we looked at the case when both the populations are finite. There exist
analogous examples in the case when one is of finite cardinality and the other infinite.
For example, working with R consisting of six records labelled 1 and one labelled 2 and
S defined as an infinite population consisting of equal proportions of 1 and 2 labelled
records. Also, theorem 5 is valid in the case of one {(or both) of the populations being
infinite.

Finally, to show that a greedy can be optimal, we return to our example from the intro-
duction .

Example 3 Let the R and S sources each be comprised of n elements labelled 1, ..., 1.
Below, we sketch a proof of the claim we made there that alternating is optimal. Tt is easy
to check that the alternating is greedy and all greedy have the same number of expected
matches.

Suppose, to the contrary, that the alternating policy is strictly beaten at some step k. Let
C be a policy that maximizes the expected number of matches at this step. We say that C
takes an excess R at step j if Ng(j) > [k/2], and define excess S analogously. Let E; denote
the event where C takes an excess R or S for the first time, at step j. By definition of C,
E; has a positive probability. Define a second policy C* that duplicates C exactly, except
on E; where it chooses from the opposite sources at both step j and k. It is clear that C
and C* couple at step k since, by optimality of C, the k-th step taken by C must be greedy.
That is, if C takes an excess R (resp., excess S) at step j, then it must choose from source
S (resp., source R} at step k. It is also clear that policy C* is implementable. We have thus
constructed a policy C* that satisfies E(Mc-(n)) = E(Mc(n)), but does not take an excess R
or S until after step j. Repeating this argument utmost k times, if necessary, we arrive ata
policy C* that satisfies E(Mc«(n)) = E(Mc(n)) and never takes an excess R or S during its
first k steps. For such a policy we have E(Mx(n)) = E(Mc-(n)) = E(Mc(n)), violating cur
assumption that the alternating policy is strictly beaten at step k by C. Hence, we have
shown that alternating is optimal. §

In the above example the optimality of the alternating can also be proved using tech-
niques of Stochastic Dynamic Programming (SIDP) as the alternating policy allows closed
form expression of the expected number of matches. As mentioned earlier, in most ex-
amples, whether [R] is finite or infinite, the alternating will not be a greedy policy. In
these cases, a greedy does not admit a closed form expression for the expected number
of matches. This makes it difficult to establish the optimality via the SDP approach.
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4, CoNCLUSION

We have shown that, in general, if the choice is between an alternating policy and a greedy
policy then the latter is preferable. But we have assumed that the proportions of labels
within the two sources are known, a reasonable assumption. But in the case of unknown
distributions, the problem has a statistical component; that of estimating the unknown
probabilities. The frequentist approach leads to the maximum likelihood estimators

Pmie(n +1) = NR (R()) /R(n) and  Smie(n +1) = Ns (S(m)) /S(n), n=1,2,... (60)

which possess nice properties such as strong consistency and asymptotic efficiency. It is
interesting to note that the use of these estimators results in

Nr (R(n)) - Sme(n + 1) = Nr (R(n)) - Ns (S(m)} /S(n), n=1,2,... (61)
and
Ng (S(m)) - mre(n + 1) = Ng (S(n)) - Nr (R(n)) /R(n), n=1,2,... (62)

which implies that an alternating policy will be a greedy policy with MLE estimates of the
probabilities. One could alternatively take a Bayesian approach to this estimation prob-
lem. Study of the optimality of the resulting reading policy and its asymptotic properties
is interesting.

In the case where |R| = o0 we have shown that the alternating policies are optimal among
the non-adaptives, and that the greedy policies are optimal among all policies. When
IR| < oo we have shown that greedy policies may differ with respect to their expect-
ed number of matches, and can even be inadmissible (Example 1). Moreover, we have
shown that some non-greedy policies may be admissible, and that optimal policies may
fail to exist (Example 2 and Theorem 2). Nevertheless, one may safely ignore non-adaptive
strategies as every greedy dominates any alternating (alternating being optimal among
non-adaptives). And in almost all cases, strictly dominates any alternating.

In the case where [R| = oo, it would be of interest to explore the asymptotics associated
with Mg, Ma, and also their difference Mg — Ma. In the |[R| < oo case, it would be of
interest to find conditions under which an optimal policy is guaranteed to exist. In our
introductory card matching problem (analyzed later in Example 3) we showed that every
greedy policy is optimal. It would be interesting to know whether the existence of an
optimal policy ensures that every greedy is optimal and, if not, which conditions ensure
the optimality of all greedy policies.
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